Brightness and Flux Density

- Ray -optics approximation (source size $>\lambda$)
- Conservation of surface brightness *
 - Independent of distance

- So same at source and detector!
- Also if there are optical components (lens,mirror)
 - * As long as nothing gets in the way!

Example – The Sun

Near vs Far

Flux DOES change

Obviously the surface area we see DOES change

 so the flux we receive changes going from Venus to Mars

$$area \propto \frac{1}{r^2}$$

$$flux \propto \frac{1}{r^2}$$

Geometry, Angles etc.

- dσ infinitesimal surface
- θ Angle of incidence
- $d\Omega$ infinitesimal solid angle
- υ Frequency

Energy flow

- $dE_v = I_v \cos(\theta) d\sigma d\Omega dt dv$
- dP = dE/dt

• $dP_v = I_v \cos(\theta) d\sigma d\Omega dv$

$$I_{\nu} = \frac{dP_{\nu}}{(\cos\theta d \sigma) d\nu d\Omega}$$

Flux Density

Flux density from a source received at unit detector

$$S_{\nu} \equiv \int I_{\nu}(\theta, \phi) \cos \theta d\Omega$$

• If $\cos\theta \sim 1$ (e.g 1 deg field of KAT7 $\cos\theta > 0.9998$)

$$S_{\nu} \equiv \int I_{\nu}(\theta, \phi) d\Omega$$

Radio Astronomers measures S in Jansky

$$1Jy = 10^{-26} W m^{-2} Hz^{-1}$$

Spectral Luminosity

$$L_{v} = 4\pi r^{2} S_{v}$$

Total Luminosity

• Integrate over freq $L=4\pi r^2 \int S_{\nu} d\nu$

Notes

- Not all telescopes have cosθ ~ 1 (PAPER, LOFAR)
- If the source is resolved in you actually measure a brightness per solid angle (e.g Jy/arcsec ²)
- Strong point source calibrator may be ~10Jy
- Secondary calibrator ~1Jy

• Deep surveys see sources to 0.1µJy

Example: The Sun

Rayleigh -Jeans approximation for radio

$$\frac{h \nu}{kT} \ll 1$$

• Brightness Temperature

$$I_{\nu} = B_{\nu} \sim \frac{2kT \nu^2}{c^2}$$

Genral blackbody

Sun continued

- h = Planck constant $(6.63*10^{-34} \text{ Js})$
- $k = Boltzmann constant (1.38 * 10^{-23} J/K)$
- $c = velocity of light (2.998 *10^8 m/s)$
- Take v = 10GHz

- Assume $T_o = 5800K$
- Distance to sun 1.496*10¹¹m
- Angular diameter of sun 0.0094rad (0.53°)

Results

• At 10GHz

- $I = 1.7*10^{-16} \text{ W/m}^2/\text{Hz}$
- area of sun's disk = $6.9*10^{-5}$ sterad
- $\text{ so } S = 1.2*10^6 \text{ Jy}$
- (in reality it is about 4MJy and varies with activity)

Questions

- If angular resolution = λ /D how big a dish would we need to resolve the sun at 10GHz (3cm)?
- When would be out of the Rayleigh-Jeans approximation at 10GHz

- Why might we see more than than our estimate?
- What if we looked at a star like the sun at 1pc?

Stars

- Suppose we move our sun (a typical star) as far as
 - Nearby star (1pc = 206265AU)
 - α Centauri 1.3pc
 - Spiral arm Orion nebula 412pc
 - Centre of galaxy 7.9kpc